1,071 research outputs found

    A survey on performance analysis of warehouse carousel systems

    Get PDF
    This paper gives an overview of recent research on the performance evaluation and design of carousel systems. We discuss picking strategies for problems involving one carousel, consider the throughput of the system for problems involving two carousels, give an overview of related problems in this area, and present an extensive literature review. Emphasis has been given on future research directions in this area

    Monte Carlo methods of PageRank computation

    Get PDF
    We describe and analyze an on-line Monte Carlo method of PageRank computation. The PageRank is being estimated basing on results of a large number of short independent simulation runs initiated from each page that contains outgoing hyperlinks. The method does not require any storage of the hyperlink matrix and is highly parallelizable. We study confidence intervals, and discover drawbacks of the absolute error criterion and the relative error criterion. Further, we suggest a so-called weighted relative error criterion, which ensures a good accuracy in a relatively small number of simulation runs. Moreover, with the weighted relative error measure, the complexity of the algorithm does not depend on the web structure

    Optimal picking of large orders in carousel systems

    Get PDF
    A carousel is an automated storage and retrieval system which consists of a circular disk with a large number of shelves and drawers along its circumference. The disk can rotate either direction past a picker who has a list of items that have to be collected from nn different drawers. In this paper, we assume that locations of the nn items are independent and have a continous non-uniform distribution over the carousel circumference. For this model, we determine a limiting behavior of the shortest rotation time needed to collect one large order. In particular, our limiting result indicates that if an order is large, then it is optimal to allocate {\it less} frequently asked items {\it close} to the picker's starting position. This is in contrast with picking of small orders where the optimal allocation rule is clearly the opposite. We also discuss travel times and allocation issues for optimal picking of sequential orders

    Asymptotic analysis for personalized Web search

    Get PDF
    Personalized PageRank is used in Web search as an importance measure for Web documents. The goal of this paper is to characterize the tail behavior of the PageRank distribution in the Web and other complex networks characterized by power laws. To this end, we model the PageRank as a solution of a stochastic equation R=di=1NAiRi+BR\stackrel{d}{=}\sum_{i=1}^NA_iR_i+B, where RiR_i's are distributed as RR. This equation is inspired by the original definition of the PageRank. In particular, NN models the number of incoming links of a page, and BB stays for the user preference. Assuming that NN or BB are heavy-tailed, we employ the theory of regular variation to obtain the asymptotic behavior of RR under quite general assumptions on the involved random variables. Our theoretical predictions show a good agreement with experimental data

    Organizing Multidisciplinary Care for Children with Neuromuscular Diseases

    Get PDF
    The Academic Medical Center (AMC) in Amsterdam, The Netherlands, recently opened the `Children's Muscle Center Amsterdam' (CMCA). The CMCA diagnoses and treats children with neuromuscular diseases. These patients require care from a variety of clinicians. Through the establishment of the CMCA, children and their parents will generally visit the hospital only once a year, while previously they visited on average six times a year. This is a major improvement, because the hospital visits are both physically and psychologically demanding for the patients. This article describes how quantitative modelling supports the design and operations of the CMCA. First, an integer linear program is presented that selects which patients to invite for a treatment day and schedules the required combination of consultations, examinations and treatments on one day. Second, the integer linear program is used as input to a simulation to study to estimate the capacity of the CMCA, expressed in the distribution of the number patients that can be seen on one diagnosis day. Finally, a queueing model is formulated to predict the access time distributions based upon the simulation outcomes under various demand scenarios

    In-Degree and PageRank of web pages: why do they follow similar power laws?

    Get PDF
    PageRank is a popularity measure designed by Google to rank Web pages. Experiments confirm that PageRank values obey a power law with the same exponent as In-Degree values. This paper presents a novel mathematical model that explains this phenomenon. The relation between PageRank and In-Degree is modelled through a stochastic equation, which is inspired by the original definition of PageRank, and is analogous to the well-known distributional identity for the busy period in the M/G/1M/G/1 queue. Further, we employ the theory of regular variation and Tauberian theorems to analytically prove that the tail distributions of PageRank and In-Degree differ only by a multiple factor, for which we derive a closed-form expression. Our analytical results are in good agreement with experimental data

    A framework for evaluating statistical dependencies and rank correlations in power law graphs

    Get PDF
    We analyze dependencies in power law graph data (Web sample, Wikipedia sample and a preferential attachment graph) using statistical inference for multivariate regular variation. To the best of our knowledge, this is the first attempt to apply the well developed theory of regular variation to graph data. The new insights this yields are striking: the three above-mentioned data sets are shown to have a totally different dependence structure between different graph parameters, such as in-degree and PageRank. Based on the proposed methodology, we suggest a new measure for rank correlations. Unlike most known methods, this measure is especially sensitive to rank permutations for topranked nodes. Using this method, we demonstrate that the PageRank ranking is not sensitive to moderate changes in the damping factor

    Monte Carlo methods in PageRank computation: When one iteration is sufficient

    Get PDF
    PageRank is one of the principle criteria according to which Google ranks Web pages. PageRank can be interpreted as a frequency of visiting a Web page by a random surfer and thus it reflects the popularity of a Web page. Google computes the PageRank using the power iteration method which requires about one week of intensive computations. In the present work we propose and analyze Monte Carlo type methods for the PageRank computation. There are several advantages of the probabilistic Monte Carlo methods over the deterministic power iteration method: Monte Carlo methods provide good estimation of the PageRank for relatively important pages already after one iteration; Monte Carlo methods have natural parallel implementation; and finally, Monte Carlo methods allow to perform continuous update of the PageRank as the structure of the Web changes

    Collecting n items randomly located on a circle

    Get PDF
    IV+101hlm.;24c
    corecore